Behavioral study of selected microorganisms in an aqueous electrohydrodynamic liquid bridge

نویسندگان

  • Astrid H. Paulitsch-Fuchs
  • Andrea Zsohár
  • Adam D. Wexler
  • Andrea Zauner
  • Clemens Kittinger
  • Joeri de Valença
  • Elmar C. Fuchs
چکیده

An aqueous electrohydrodynamic (EHD) floating liquid bridge is a unique environment for studying the influence of protonic currents (mA cm-2) in strong DC electric fields (kV cm-1) on the behavior of microorganisms. It forms in between two beakers filled with water when high-voltage is applied to these beakers. We recently discovered that exposure to this bridge has a stimulating effect on Escherichia coli.. In this work we show that the survival is due to a natural Faraday cage effect of the cell wall of these microorganisms using a simple 2D model. We further confirm this hypothesis by measuring and simulating the behavior of Bacillus subtilis subtilis, Neochloris oleoabundans, Saccharomyces cerevisiae and THP-1 monocytes. Their behavior matches the predictions of the model: cells without a natural Faraday cage like algae and monocytes are mostly killed and weakened, whereas yeast and Bacillus subtilis subtilis survive. The effect of the natural Faraday cage is twofold: First, it diverts the current from passing through the cell (and thereby killing it); secondly, because it is protonic it maintains the osmotic pressure in the cell wall, thereby mitigating cytolysis which would normally occur due to the low osmotic pressure of the surrounding medium. The method presented provides the basis for selective disinfection of solutions containing different microorganisms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of colloidal Particles associated with the liquid bridge in sticking during drying in Superheated Steam

It is very important in the design of a drying system is to evaluate sticking behaviour of the materials goes under drying. A new approach to the sticking issue is applied in this study by carrying out a sticking test for the liquid associated with the materials under study. It was found that the liquid bridge is responsible of the initial sticking of the materials to the contact surface and th...

متن کامل

Characterization of Liquid Bridge in Gas/Oil Gravity Drainage in Fractured Reservoirs

Gravity drainage is the main mechanism which controls the oil recovery from fractured reservoirs in both gas-cap drive and gas injection processes. The liquid bridge formed between two adjacent matrix blocks is responsible for capillary continuity phenomenon. The accurate determination of gas-liquid interface profile of liquid bridge is crucial to predict fracture capillary pressure precisely. ...

متن کامل

Thermodynamic Study of L-alanine in Aqueous Solutions of 1-Hexyl-3-Methylimidazolium Ibuprofenate as an Active Pharmaceutical Ingredient Ionic Liquid (API-IL)

The present work reported density, viscosity, speed of sound, electrical conductivity and refractive index data of L-alanine in the aqueous solutions of 1-hexyl-3-methylimidazolium ibuprofenate at T= 298.15 K. Using the measured data, partial molar volume of transfer ( ), partial molar isentropic compressibility of transfer ( ), viscosity B-coefficient of transfer (∆traB), ion association const...

متن کامل

Environmentally responsive core/shell particles via electrohydrodynamic co-jetting of fully miscible polymer solutions.

Herein it is demonstrated that electrohydrodynamic co-jetting is not limited to Janus-type particles, but can also be used for the preparation of core/shell particles. Using side-by-side flow of miscible polymer solutions, electrohydrodynamic co-jetting offers an elegant and scalable route towards preparation of core/shell particles with otherwise difficult-to-prepare particle architectures, in...

متن کامل

A numerical study of electrohydrodynamic flow analysis in a circular cylindrical conduit using orthonormal Bernstein polynomials

In this work, the nonlinear boundary value problem in electrohydrodynamics flow of a fluid in an ion-drag configuration in a circular cylindrical conduit is studied numerically. An effective collocation method, which is based on orthonormal Bernstein polynomials is employed to simulate the solution of this model. Some properties of orthonormal Bernstein polynomials are introduced and utilized t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017